Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Holographic displays are an upcoming technology for AR and VR applications, with the ability to show 3D content with accurate depth cues, including accommodation and motion parallax. Recent research reveals that only a fraction of holographic pixels are needed to display images with high fidelity, improving energy efficiency in future holographic displays. However, the existing iterative method for computing sparse amplitude and phase layouts does not run in real time; instead, it takes hundreds of milliseconds to render an image into a sparse hologram. In this paper, we present a non-iterative amplitude and phase computation for sparse Fourier holograms that uses Perlin noise in the image–plane phase. We conduct simulated and optical experiments. Compared to the Gaussian-weighted Gerchberg–Saxton method, our method achieves a run time improvement of over 600 times while producing a nearly equal PSNR and SSIM quality. The real-time performance of our method enables the presentation of dynamic content crucial to AR and VR applications, such as video streaming and interactive visualization, on holographic displays.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Free, publicly-accessible full text available November 1, 2025
-
The median filter scheme is an elegant, monotone discretization of the level set formulation of motion by mean curvature. It turns out to evolve every level set of the initial condition precisely by another class of methods known as threshold dynamics. Median filters are, in other words, the natural level set versions of threshold dynamics algorithms. Exploiting this connection, we revisit median filters in light of recent progress on the threshold dynamics method. In particular, we give a variational formulation of, and exhibit a Lyapunov function for, median filters, resulting in energy based unconditional stability properties. The connection also yields analogues of median filters in the multiphase setting of mean curvature flow of networks. These new multiphase level set methods do not require frequent redistancing, and can accommodate a wide range of surface tensions.more » « less
-
Recently, several approaches have emerged for generating neural representations with multiple levels of detail (LODs). LODs can improve the rendering by using lower resolutions and smaller model sizes when appropriate. However, existing methods generally focus on a few discrete LODs which suffer from aliasing and flicker artifacts as details are changed and limit their granularity for adapting to resource limitations. In this paper, we propose a method to encode light field networks with continuous LODs, allowing for finely tuned adaptations to rendering conditions. Our training procedure uses summed-area table filtering allowing efficient and continuous filtering at various LODs. Furthermore, we use saliency-based importance sampling which enables our light field networks to distribute their capacity, particularly limited at lower LODs, towards representing the details viewers are most likely to focus on. Incorporating continuous LODs into neural representations enables progressive streaming of neural representations, decreasing the latency and resource utilization for rendering.more » « less
-
Abstract The structure and dynamics of the cell nucleus regulate nearly every facet of the cell. Changes in nuclear shape limit cell motility and gene expression. Although the nucleus is generally seen as the stiffest organelle in the cell, cells can nevertheless deform the nucleus to large strains by small mechanical stresses. Here, we show that the mechanical response of the cell nucleus exhibits active fluidization that is driven by the BRG 1 motor of the SWI/SNF/BAF chromatin-remodeling complex. Atomic force microscopy measurements show that the nucleus alters stiffness in response to the cell substrate stiffness, which is retained after the nucleus is isolated and that the work of nuclear compression is mostly dissipated rather than elastically stored. Inhibiting BRG 1 stiffens the nucleus and eliminates dissipation and nuclear remodeling both in isolated nuclei and in intact cells. These findings demonstrate a novel link between nuclear motor activity and global nuclear mechanics.more » « less
-
Perfluorocarbon nanodroplets (PFCnDs) are ultrasound contrast agents that phase-transition from liquid nanodroplets to gas microbubbles when activated by laser irradiation or insonated with an ultrasound pulse. The dynamics of PFCnDs can vary drastically depending on the nanodroplet composition, including the lipid shell properties. In this paper, we investigate the effect of varying the ratio of PEGylated to non-PEGylated phospholipids in the outer shell of PFCnDs on the acoustic nanodroplet vaporization (liquid to gas phase transition) and inertial cavitation (rapid collapse of the vaporized nanodroplets) dynamics in vitro when insonated with focused ultrasound. Nanodroplets with a high concentration of PEGylated lipids had larger diameters and exhibited greater variance in size distribution compared to nanodroplets with lower proportions of PEGylated lipids in the lipid shell. PFCnDs with a lipid shell composed of 50:50 PEGylated to non-PEGylated lipids yielded the highest B-mode image intensity and duration, as well as the greatest pressure difference between acoustic droplet vaporization onset and inertial cavitation onset. We demonstrate that slight changes in lipid shell composition of PFCnDs can significantly impact droplet phase transitioning and inertial cavitation dynamics. These findings can help guide researchers to fabricate PFCnDs with optimized compositions for their specific applications.more » « less
-
ABSTRACT Medical procedures are an essential part of healthcare delivery, and the acquisition of procedural skills is a critical component of medical education. Unfortunately, procedural skill is not evenly distributed among medical providers. Skills may vary within departments or institutions, and across geographic regions, depending on the provider’s training and ongoing experience. We present a mixed reality real-time communication system to increase access to procedural skill training and to improve remote emergency assistance. Our system allows a remote expert to guide a local operator through a medical procedure. RGBD cameras capture a volumetric view of the local scene including the patient, the operator, and the medical equipment. The volumetric capture is augmented onto the remote expert’s view to allow the expert to spatially guide the local operator using visual and verbal instructions. We evaluated our mixed reality communication system in a study in which experts teach the ultrasound-guided placement of a central venous catheter (CVC) to students in a simulation setting. The study compares state-of-theart video communication against our system. The results indicate that our system enhances and offers new possibilities for visual communication compared to video teleconference-based training.more » « less
An official website of the United States government

Full Text Available